Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 3053, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30076302

RESUMO

During translation termination in bacteria, the release factors RF1 and RF2 are recycled from the ribosome by RF3. While high-resolution structures of the individual termination factors on the ribosome exist, direct structural insight into how RF3 mediates dissociation of the decoding RFs has been lacking. Here we have used the Apidaecin 137 peptide to trap RF1 together with RF3 on the ribosome and visualize an ensemble of termination intermediates using cryo-electron microscopy. Binding of RF3 to the ribosome induces small subunit (SSU) rotation and swivelling of the head, yielding intermediate states with shifted P-site tRNAs and RF1 conformations. RF3 does not directly eject RF1 from the ribosome, but rather induces full rotation of the SSU that indirectly dislodges RF1 from its binding site. SSU rotation is coupled to the accommodation of the GTPase domain of RF3 on the large subunit (LSU), thereby promoting GTP hydrolysis and dissociation of RF3 from the ribosome.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Escherichia coli/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Sítios de Ligação , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Simulação de Acoplamento Molecular , Terminação Traducional da Cadeia Peptídica , Ligação Proteica , Conformação Proteica , RNA de Transferência/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Ribossomos/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(36): 8978-8983, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30126986

RESUMO

Many Gram-positive pathogenic bacteria employ ribosomal protection proteins (RPPs) to confer resistance to clinically important antibiotics. In Bacillus subtilis, the RPP VmlR confers resistance to lincomycin (Lnc) and the streptogramin A (SA) antibiotic virginiamycin M (VgM). VmlR is an ATP-binding cassette (ABC) protein of the F type, which, like other antibiotic resistance (ARE) ABCF proteins, is thought to bind to antibiotic-stalled ribosomes and promote dissociation of the drug from its binding site. To investigate the molecular mechanism by which VmlR confers antibiotic resistance, we have determined a cryo-electron microscopy (cryo-EM) structure of an ATPase-deficient B. subtilis VmlR-EQ2 mutant in complex with a B. subtilis ErmDL-stalled ribosomal complex (SRC). The structure reveals that VmlR binds within the E site of the ribosome, with the antibiotic resistance domain (ARD) reaching into the peptidyltransferase center (PTC) of the ribosome and a C-terminal extension (CTE) making contact with the small subunit (SSU). To access the PTC, VmlR induces a conformational change in the P-site tRNA, shifting the acceptor arm out of the PTC and relocating the CCA end of the P-site tRNA toward the A site. Together with microbiological analyses, our study indicates that VmlR allosterically dissociates the drug from its ribosomal binding site and exhibits specificity to dislodge VgM, Lnc, and the pleuromutilin tiamulin (Tia), but not chloramphenicol (Cam), linezolid (Lnz), nor the macrolide erythromycin (Ery).


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Antibacterianos/química , Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Farmacorresistência Bacteriana , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/genética , Antibacterianos/farmacologia , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Ribossomos/química , Ribossomos/genética , Ribossomos/metabolismo
3.
Cell Chem Biol ; 25(5): 530-539.e7, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29526712

RESUMO

Proline-rich antimicrobial peptides (PrAMPs) internalize into susceptible bacteria using specific transporters and interfere with protein synthesis and folding. To date, mammalian PrAMPs have so far been identified only in artiodactyls. Since cetaceans are co-phyletic with artiodactyls, we mined the genome of the bottlenose dolphin Tursiops truncatus, leading to the identification of two PrAMPs, Tur1A and Tur1B. Tur1A, which is orthologous to the bovine PrAMP Bac7, is internalized into Escherichia coli, without damaging the membranes, using the inner membrane transporters SbmA and YjiL/MdM. Furthermore, like Bac7, Tur1A also inhibits bacterial protein synthesis by binding to the ribosome and blocking the transition from the initiation to the elongation phase. By contrast, Tur1B is a poor inhibitor of protein synthesis and may utilize another mechanism of action. An X-ray structure of Tur1A bound within the ribosomal exit tunnel provides a basis to develop these peptides as novel antimicrobial agents.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Escherichia coli/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Animais , Cristalografia por Raios X , Golfinhos , Escherichia coli/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Proteínas de Escherichia coli/metabolismo , Humanos , Modelos Moleculares , Ribossomos/metabolismo
4.
Mol Cell ; 68(3): 515-527.e6, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100052

RESUMO

Ribosomes synthesizing proteins containing consecutive proline residues become stalled and require rescue via the action of uniquely modified translation elongation factors, EF-P in bacteria, or archaeal/eukaryotic a/eIF5A. To date, no structures exist of EF-P or eIF5A in complex with translating ribosomes stalled at polyproline stretches, and thus structural insight into how EF-P/eIF5A rescue these arrested ribosomes has been lacking. Here we present cryo-EM structures of ribosomes stalled on proline stretches, without and with modified EF-P. The structures suggest that the favored conformation of the polyproline-containing nascent chain is incompatible with the peptide exit tunnel of the ribosome and leads to destabilization of the peptidyl-tRNA. Binding of EF-P stabilizes the P-site tRNA, particularly via interactions between its modification and the CCA end, thereby enforcing an alternative conformation of the polyproline-containing nascent chain, which allows a favorable substrate geometry for peptide bond formation.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Peptídeos/metabolismo , Ribossomos/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestrutura , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Conformação de Ácido Nucleico , Fatores de Alongamento de Peptídeos/química , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/ultraestrutura , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/metabolismo , Peptídeos/química , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ribossomos/química , Ribossomos/ultraestrutura , Relação Estrutura-Atividade , Fator de Iniciação de Tradução Eucariótico 5A
5.
Trends Biochem Sci ; 42(8): 669-680, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28629612

RESUMO

Ribosomes that translate mRNAs lacking stop codons become stalled at the 3' end of the mRNA. Recycling of these stalled ribosomes is essential for cell viability. In bacteria three ribosome rescue systems have been identified so far, with the most ubiquitous and best characterized being the trans-translation system mediated by transfer-messenger RNA (tmRNA) and small protein B (SmpB). The two additional rescue systems present in some bacteria employ alternative rescue factor (Arf) A and release factor (RF) 2 or ArfB. Recent structures have revealed how ArfA mediates ribosome rescue by recruiting the canonical termination factor RF2 to ribosomes stalled on truncated mRNAs. This now provides us with the opportunity to compare and contrast the available structures of all three bacterial ribosome rescue systems.


Assuntos
Bactérias/metabolismo , Ribossomos/metabolismo , Bactérias/genética , Conformação de Ácido Nucleico , Ribossomos/química
6.
Nature ; 541(7638): 546-549, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-27906161

RESUMO

In bacteria, ribosomes stalled on truncated mRNAs that lack a stop codon are rescued by the transfer-messenger RNA (tmRNA), alternative rescue factor A (ArfA) or ArfB systems. Although tmRNA-ribosome and ArfB-ribosome structures have been determined, how ArfA recognizes the presence of truncated mRNAs and recruits the canonical termination release factor RF2 to rescue the stalled ribosomes is unclear. Here we present a cryo-electron microscopy reconstruction of the Escherichia coli 70S ribosome stalled on a truncated mRNA in the presence of ArfA and RF2. The structure shows that the C terminus of ArfA binds within the mRNA entry channel on the small ribosomal subunit, and explains how ArfA distinguishes between ribosomes that bear truncated or full-length mRNAs. The N terminus of ArfA establishes several interactions with the decoding domain of RF2, and this finding illustrates how ArfA recruits RF2 to the stalled ribosome. Furthermore, ArfA is shown to stabilize a unique conformation of the switch loop of RF2, which mimics the canonical translation termination state by directing the catalytically important GGQ motif within domain 3 of RF2 towards the peptidyl-transferase centre of the ribosome. Thus, our structure reveals not only how ArfA recruits RF2 to the ribosome but also how it promotes an active conformation of RF2 to enable translation termination in the absence of a stop codon.


Assuntos
Códon de Terminação , Microscopia Crioeletrônica , Proteínas de Escherichia coli/química , Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Ribossomos/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Modelos Moleculares , Fatores de Terminação de Peptídeos/metabolismo , Fatores de Terminação de Peptídeos/ultraestrutura , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , Ribossomos/química , Ribossomos/ultraestrutura
7.
RNA Biol ; 14(1): 104-112, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27841727

RESUMO

Ribosomal decoding is an essential process in every living cell. During protein synthesis the 30S ribosomal subunit needs to accomplish binding and accurate decoding of mRNAs. From mutational studies and high-resolution crystal structures nucleotides G530, A1492 and A1493 of the 16S rRNA came into focus as important elements for the decoding process. Recent crystallographic data challenged the so far accepted model for the decoding mechanism. To biochemically investigate decoding in greater detail we applied an in vitro reconstitution approach to modulate single chemical groups at A1492 and A1493. The modified ribosomes were subsequently tested for their ability to efficiently decode the mRNA. Unexpectedly, the ribosome was rather tolerant toward modifications of single groups either at the base or at the sugar moiety in terms of translation activity. Concerning translation fidelity, the elimination of single chemical groups involved in a hydrogen bonding network between the tRNA, mRNA and rRNA did not change the accuracy of the ribosome. These results indicate that the contribution of those chemical groups and the formed hydrogen bonds are not crucial for ribosomal decoding.


Assuntos
Sítios de Ligação , Códon , Mutagênese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Aminoglicosídeos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , RNA Ribossômico , RNA Ribossômico 16S/genética , RNA de Transferência
8.
Nucleic Acids Res ; 45(5): 2887-2896, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-27986857

RESUMO

Ribosomes are the protein synthesizing machines of the cell. Recent advances in cryo-EM have led to the determination of structures from a variety of species, including bacterial 70S and eukaryotic 80S ribosomes as well as mitoribosomes from eukaryotic mitochondria, however, to date high resolution structures of plastid 70S ribosomes have been lacking. Here we present a cryo-EM structure of the spinach chloroplast 70S ribosome, with an average resolution of 5.4 Å for the small 30S subunit and 3.6 Å for the large 50S ribosomal subunit. The structure reveals the location of the plastid-specific ribosomal proteins (RPs) PSRP1, PSRP4, PSRP5 and PSRP6 as well as the numerous plastid-specific extensions of the RPs. We discover many features by which the plastid-specific extensions stabilize the ribosome via establishing additional interactions with surrounding ribosomal RNA and RPs. Moreover, we identify a large conglomerate of plastid-specific protein mass adjacent to the tunnel exit site that could facilitate interaction of the chloroplast ribosome with the thylakoid membrane and the protein-targeting machinery. Comparing the Escherichia coli 70S ribosome with that of the spinach chloroplast ribosome provides detailed insight into the co-evolution of RP and rRNA.


Assuntos
Proteínas de Cloroplastos/química , Cloroplastos/química , Proteínas Ribossômicas/química , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/química , Spinacia oleracea/química , Sítios de Ligação , Proteínas de Cloroplastos/metabolismo , Microscopia Crioeletrônica , Modelos Moleculares , Estabilidade de RNA , RNA Ribossômico/química , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo
9.
Proc Natl Acad Sci U S A ; 113(27): 7527-32, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27330110

RESUMO

The ribosome is one of the major targets for therapeutic antibiotics; however, the rise in multidrug resistance is a growing threat to the utility of our current arsenal. The orthosomycin antibiotics evernimicin (EVN) and avilamycin (AVI) target the ribosome and do not display cross-resistance with any other classes of antibiotics, suggesting that they bind to a unique site on the ribosome and may therefore represent an avenue for development of new antimicrobial agents. Here we present cryo-EM structures of EVN and AVI in complex with the Escherichia coli ribosome at 3.6- to 3.9-Å resolution. The structures reveal that EVN and AVI bind to a single site on the large subunit that is distinct from other known antibiotic binding sites on the ribosome. Both antibiotics adopt an extended conformation spanning the minor grooves of helices 89 and 91 of the 23S rRNA and interacting with arginine residues of ribosomal protein L16. This binding site overlaps with the elbow region of A-site bound tRNA. Consistent with this finding, single-molecule FRET (smFRET) experiments show that both antibiotics interfere with late steps in the accommodation process, wherein aminoacyl-tRNA enters the peptidyltransferase center of the large ribosomal subunit. These data provide a structural and mechanistic rationale for how these antibiotics inhibit the elongation phase of protein synthesis.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Oligossacarídeos/farmacologia , Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Subunidades Ribossômicas Maiores de Bactérias/efeitos dos fármacos , Sequência de Aminoácidos , Sítios de Ligação , Microscopia Crioeletrônica , Escherichia coli , Dados de Sequência Molecular , Estrutura Molecular , Subunidades Ribossômicas Maiores de Bactérias/ultraestrutura , Imagem Individual de Molécula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...